Stay tuned for our LIVE OncLive News Network coverage straight from the #ASH18 conference floor! 

Aggressive Goals Fuel Research, Growth at 'The James'

By Ed Rabinowitz
Published: Thursday, May 20, 2010
Click here to view as PDF.

The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute opened on July 9, 1990, as the adult patient-care component of The Ohio State University (OSU) Comprehensive Cancer Center (CCC). Today, “The James,” as it is referred to, is the only dedicated cancer hospital in the Midwest. In addition, The James is one of 40 National Cancer Institute-designated comprehensive cancer centers in the United States and one of only five approved to conduct phase I and II clinical trials of new anticancer drugs.

Clinical Trials Bring Hope

Nearly 2 years ago, the cancer center outlined an ambitious goal to grow participation in clinical trials by 20% per year over a 28-month period, culminating with 2010 patients in therapeutic clinical trials by 2010. Thanks to a comprehensive strategy, the center accomplished this goal 5 months ahead of schedule.

“Most years before the campaign, we were averaging about 700 patients enrolled in therapeutic clinical trials,” James Thomas, MD, medical director of OSU ’s clinical trials office, explained. “For calendar year 2009, we’ll be around 1350 [patients] by the time the year is done—almost double over a 2-year time period.”

Thomas said The James’ success in clinical trial recruiting is attributable to a 3-pronged campaign aimed at increasing awareness and encouraging patient participation. The first step was placing patient-targeted marketing materials, including posters and pamphlets, in clinic areas to tout the benefits of clinical trial participation. The materials highlighted the results of multiple studies that show people who engage in cancer clinical trials receive better quality of care and experience better outcomes than those who pursue standard therapy.

The campaign then targeted physicians in Ohio and surrounding states who refer patients to the cancer center. The James alerted physicians by e-mail of new treatment trials and the availability of new agents. Going door to door internally at the OSUCCC also helped.

“We reminded everyone why we’re here,” Thomas said. “Cancer research is our focus; it’s our mission. We made sure everyone was aware of the mission and made certain we eliminated any barriers there might be for people enrolling in clinical trials.

“We often say we’re in the hope business,” said Thomas, explaining that clinical trials give patients hope by providing options to try to fight their cancer. While great strides have been made in the fight against cancer, Thomas acknowledged that there is a long way to go. Clinical trials, he said, will help pave that road.

“Nationally, we figure only about 3% of people with cancer go on clinical trials, so that’s the sad part,” Thomas said. “If we can increase participation in clinical trials, it’s going to help everyone because we’re going to continue to make progress.”

OSU’s Technology Pioneers

In 1999, OSU physicians were the first in the country to perform surgery using the da Vinci robotic surgical system. After starting with 1 or 2 surgical disciplines using robotics, OSU now has more than 25 surgeons from more than 8 specialties who are skilled in robotic-assisted surgery and are performing robotic-assisted procedures, including laparoscopic surgery for prostate cancer. The University has also established the Center for Advanced Robotic Surgery, representing the next evolution in surgical care.

Ronney Abaza, MD, codirector of the Center for Advanced Robotic Surgery, director of Robotic Urologic Surgery, and assistant professor of Urology at OSU, said the technology behind robotic instrumentation has phenomenally improved the performance of laparoscopic procedures. “We can now do even the most complex procedures in minimally invasive fashion because the robot allows us to do anything we could have done by hand through an open incision, but now through these tiny incisions,” Abaza explained. “Imagine that we’re doing the same operation on the inside without cutting any corners. But instead of doing it with our own hands, we’re doing it with tiny robotic hands the size of a pen.”

The benefits to patients are clear: less pain, less time in the hospital, and quicker recovery. Abaza said when it comes to evaluating whether an operation can be done robotically, the basic rule of thumb is that the expected quality must equal what could be accomplished by hand in an open surgical procedure. “The level of expectation we set for ourselves is that we won’t cut any corners just to be able to offer a minimally invasive operation,” he said.

The center’s surgeons perform approximately 1200 robotic surgeries annually. In addition, they train hundreds of other physicians and surgical teams on robotic techniques, many of which OSU surgeons pioneered. Abaza pointed out that the move from open surgery to robotic surgery is extremely challenging—like learning the entire operation anew. The majority of surgeons performing robotic surgery in the United States had to learn the new robotic techniques while maintaining an already busy practice, which slowed the learning curve.


View Conference Coverage
Online CME Activities
TitleExpiration DateCME Credits
Community Practice Connections™: Oncology Best Practice™ Decision Points in Advanced NSCLC: Assessing Treatment Options Beyond Disease ProgressionNov 30, 20181.0
Community Practice Connections™: Precision Medicine for Community Oncologists: Assessing the Role of Tumor-Testing Technologies in Cancer CareNov 30, 20181.0
Publication Bottom Border
Border Publication
x