University of Pennsylvania's Abramson Cancer Center: Leaders in Groundbreaking Therapies

Laura Bruck
Published: Tuesday, Dec 06, 2011
Abramson Cancer Center

University of Pennsylvania's Abramson Cancer Center

Established in 1973 as the University of Pennsylvania’s Cancer Center and subsequently renamed in 2002, the Abramson Cancer Center is a world leader in research, patient care, and education.

The October 2008 opening of the 500,000-squarefoot Ruth and Raymond Perelman Center for Advanced Medicine has streamlined the efforts of Penn Medicine’s cancer program with seamless integration of services that creates a real-time model for optimizing diagnosis, therapy, and research.

Currently, Abramson’s clinical staff oversees 70,000 outpatient visits and more than 9000 admissions, and administers approximately 33,000 chemotherapy and 66,000 radiation treatments each year. The Center also is home to more than 400 basic, transitional, and clinical scientists.

Penn Medicine’s work in immunotherapy and proton therapy are but 2 examples of the cancer program’s position at the forefront of research aimed at bringing novel treatments to clinical practice.

Immunotherapy Research: Clinical Cell and Vaccine Production Facility

An impressive example of Penn Medicine’s cutting-edge bench-to-bedside cancer research is its work with biotherapeutics, in which autologous cells are harnessed and engineered to create highly targeted and personalized therapies with minimal autoimmune-mediated toxicity.

These endeavors have their roots in Penn Medicine’s Clinical Cell and Vaccine Production Facility (CVPF). There, novel vaccines are being produced and tested in the nation’s first pilot studies and phase I and II clinical trials. CVPF scientists work in concert with those of Penn’s Developmental Therapeutics program to further the investigation of new drugs and drug combinations, and translate insights into novel cellular therapies.

To this end, CVPF scientists perform processing on a range of cell types, including bone-marrow-derived CD4 and CD8 T lymphocytes, dendritic cells, and marrow stromal cells. The cells are expanded ex vivo, with or without genetic modification, before being reintroduced into the patient, either alone or in combination with other therapies, such as vaccines. Matched donor cells are used when autologous cells are not feasible.

“We are in the midst of tremendous basic research that we can take into our facility and translate to the bedside,” said Bruce L. Levine, PhD, associate professor of Pathology and Laboratory Medicine and director of Penn Medicine’s Clinical Cell and Vaccine Production program. “We’re highly integrated, with one hand bridging from the research lab and the other delivering the cells to the clinic.”

Applications are anticipated in hematologic malignancies; neuroblastoma; and breast, ovarian, and lung cancer; as well as nonmalignant targets such as HIV and osteogenesis imperfecta. Examples include “serial killer” T cell versus chronic lymphocytic leukemia (CLL), personalized ovarian cancer vaccines, and ductal carcinoma in situ (DCIS) vaccine.

Carl H. June, MD

Carl H. June, MD

Serial Killer T Cells versus CLL

In what is touted as a cancer treatment breakthrough 20 years in the making—and the marquee achievement of Penn’s cancer vaccine program—Abramson and Perelman School of Medicine researchers have demonstrated sustained remissions of up to 1 year in 3 patients with advanced CLL who were treated with genetically engineered versions of autologous T cells. The protocol involves modifying a patient’s harvested cells, and then infusing them back into the patient after chemotherapy. The findings are the first to demonstrate the use of gene-transfer therapy to create serial killer T cells aimed at malignant tumors.

Describing the preliminary results achieved with the first 3 patients, Carl H. June, MD, who led the work is also director of Translational Research and Abramson Center professor of Pathology and Laboratory Medicine, noted that “within 3 weeks the tumors had been blown away in a manner that was much more violent than we ever expected.”

While extremely preliminary, the findings are a source of great excitement and anticipation. “It worked much better than we thought it would,” said June.

The findings create what Penn scientists call a tumor-attack roadmap for the treatment of other malignancies, including cancers of the lung and ovaries, as well as myeloma and melanoma. Penn scientists are currently examining the feasibility of using the same technique for patients with pancreatic and other cancers.

View Conference Coverage
Online CME Activities
TitleExpiration DateCME Credits
Medical Crossfire®: Key Questions for the Use of Immunotherapy Throughout the Disease Continuum for NSCLC in an Era of Rapid DevelopmentSep 29, 20181.5
Provider and Caregiver Connection™: Addressing Patient Concerns While Managing GlioblastomaSep 29, 20182.0
Publication Bottom Border
Border Publication