5 Technologies That Could Change Your Practice

Alan Dove, PhD
Published: Friday, Oct 17, 2008
Are you neo-Amish? It’s the hot new buzzword in Silicon Valley, describing technophiles who’ve eagerly adopted almost every new gadget, but then, incongruously, decided to reject one. The neo- Amish include the computer scientist who spends his days writing innovative software but can’t be reached by e-mail, the serial entrepreneur who refuses to own a cell phone, and the Web guru who doesn’t have a blog.

Medicine, though, is the original homeland of the neo-Amish. Hospitals rush to get the latest multi-Tesla MRI machines, physicians eagerly prescribe the latest biotechnology-derived medicines, and medical laboratories happily deploy cutting-edge genomic tests on a daily basis. Meanwhile, many clinicians still keep patient charts with paper and pen, communicate with hopelessly outdated pagers, and often transfer information by entering it manually from one computer system to another.

Regulatory and financial barriers may keep some of these antiquated approaches active for a while longer, but gadget-loving doctors can take comfort in a new crop of technologies that will transform other aspects of medicine. That’s especially true in oncology, where vibrant collaborations between clinicians, researchers, and engineers are producing intriguing new tools. Ranging from electronic resources that are already available to future diagnostic and treatment systems, a sampling of these technologies shows how they could change your practice dramatically.

The pharmacist who never sleeps

At the University of Colorado medical center in Denver, CO, the oncology pharmacy of the future is already up and running. Sealed inside a containment chamber, a robot makes a series of precise movements, measuring and mixing chemotherapeutic agents and loading them into syringes or IV bags for delivery to patients. The robot, called CytoCare, was designed to overcome a slew of problems that have plagued chemotherapy administration for years.

“The first element was sort of the patient priority, and making sure that we are delivering...the right dose to the right patient,” says Jack Risenhoover, Senior Partner for North American operations at Health Robotics, the system’s manufacturer. Besides using both bar codes and computer vision technology to ensure that the medications are correct, CytoCare also weighs each dose and the fi nal mixture to be sure they’ve been measured accurately.

That alone provides a significant improvement over human pharmacists who measure doses with plastic syringes. “The variation just of the syringe marks can be plus or minus 5%, so CytoCare is usually at least 50% more accurate...than what you could do manually if the only thing that you looked at was the variation in the black lines on the syringe,” says Risenhoover. In addition, the robot is immune to the errors that can creep into human judgment, such as technicians’ natural tendency to underdose toxic medicines.

Pharmacists need not fear that robots will take away desirable jobs, however. Indeed, recent research has highlighted the many hazards that chemotherapy poses for pharmacy technicians— from exposure to the cytotoxic drugs themselves to repetitive strain injuries from drawing each dose into and out of a syringe.

The contamination doesn’t stop at the pharmacy doors, either. “Aerosols happen, aspirations happen, errors happen, leaks happen, and it doesn’t take very many of them for you to have contaminants in a variety of places, from the laminar fl ow hood where the technician performs that initial survey...to the fl oors where the syringes and bags are administered,” says Risenhoover. With the robotic system, pharmacists simply insert the sealed, bar-coded bottles of medicine through an air lock, and collect the sealed, fi nished bags or syringes for each patient’s dose from the same portal a few minutes later.

A complete system costs about $1 million, but the company estimates that it will save money in the long run by limiting errors and freeing pharmacists for other tasks. Because the robot documents each measurement and movement meticulously, it could also provide important new data on drugs. “It gives you a much more fertile, accurate field of information for future research to be able to evaluate which drugs had what kind of consequences downstream when you have an electronic medical record of all of the compounding activities that took place,” says Risenhoover.

Say “see-ay-BIG

Technophile oncologists don’t need to wait for a new robot if they want to be at the cutting edge of patient management, however. Through the National Cancer Institute’s (NCI) new Cancer Biomedical Informatics Grid (caBIG), anyone with an Internet connection can now tap into a trove of useful data about cancer.

Scientific and medical databases are certainly not a new idea, but most of these tools have amassed so much raw data, in so many diff erent formats, that they are virtually unusable by anyone but hardcore bioinformaticians. Over the past few years, caBIG has been connecting these disparate databases, standardizing their content, and equipping the whole interlinked system with user interfaces that working physicians can understand.

View Conference Coverage
Online CME Activities
TitleExpiration DateCME Credits
Clinical Interchange™: Moving Forward From the Status Quo for the Treatment of Soft Tissue Sarcoma: Key Questions and New Answers to Optimize OutcomesOct 31, 20182.0
Rapid Reviews in Oncology®: Practice-Changing Data in Acute Myeloid Leukemia: A Rapid Update From Atlanta OnlineDec 21, 20182.0
Publication Bottom Border
Border Publication