Study Calls for Basing Lung Cancer Screening Guidelines on Individual Risk

Lisa Miller
Published: Thursday, May 26, 2016
Hormuzd A. Katki, PhD

Hormuzd A. Katki, PhD

An individualized, risk-based approach to screening current and former smokers for the early detection of lung cancer would dramatically expand the population that could benefit from the preventive strategy, while saving more lives than the current US Preventive Services Task Force (USPSTF) guidelines for lung cancer screening, according to a new study.1

In 2013, the USPSTF recommended computed tomography (CT) lung cancer screening for asymptomatic adults aged 55 to 80 years with a 30 pack-year smoking history (average of 1 pack of cigarettes per day for 1 year) who are currently smoking or have quit within the past 15 years.2 Under these guidelines, about 9 million people in the United States would currently be eligible for lung cancer screening.

However, screening guidelines could instead be based on choosing those at highest individual risk of cancer. With an individual risk-based selection model, the report contends, there might be a 20% relative increase in estimated deaths prevented through low-dose CT screening above the number forecast through the USPSTF’s recommendations, even if the same number of people were screened.

As a result, the researchers suggested in the Journal of the American Medical Association article that the criteria be broadened to include more people at a high risk of developing lung cancer.

Lead author Hormuzd A. Katki, PhD, a biostatistician with the National Cancer Institute, and colleagues developed and validated risk models that suggest that screening half of all ever-smokers, defined as someone who has smoked at least 100 cigarettes in their lifetime, might result in preventing 90% of screen-preventable deaths.

Among this classification are two subgroups ignored by USPSTF guidelines: current smokers who have smoked less than the 30 pack-year limit over many years, and those who smoked a great deal more but quit more than 15 years ago. Some members in these groups still have a high risk of having lung cancer, especially when combined with additional risk factors.

Additional risk factors include characteristics such as age, sex, race, education, smoking frequency and duration, quit years, body mass index (BMI), family history of lung cancer, and self-reported emphysema. These factors are fed into a formula that produces an individual’s risk of developing lung cancer that can be used in determining if a patient should undergo CT screening.

Katki and colleagues with expertise in risk communication are currently evaluating their online risk tool for lung screening. The user inputs the risk factors, and the tool calculates the risks of lung cancer and of lung-cancer death, both for declining or entering into a screening program, thereby simplifying the challenge of determining and communication the rate of risk. The tool also provides the risk of having a false-positive CT screen.

“It’s a lot of numbers and it’s well known that communicating risks is very difficult, that patients have trouble understanding them and doctors aren’t that much better,” Katki said in an interview with OncLive. “A lot of research is being done now to try to develop a reliable shared decision-making process for eliciting risk factors, for communicating risk estimates, and then using the risks to make decisions about screening in light of the patient’s personal values.”

Katki and his coauthors developed their models using data from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). They then validated their models using data from PLCO, the National Lung Screening Trial (NLST), and the 1997-2001 National Health Interview Survey (NHIS).

For illustration, they discussed two potential risk-based screening programs. First, the fixed-population validation program would screen the same population size (9 million) as the USPSTF guidelines, but those at highest 5-year lung cancer risk (≥1.9%) based on their risk models. Second, the fixed-effectiveness program would use the same number needed to screen (NNS) to prevent 1 lung cancer death as the USPSTF guidelines (NNS = 194). This results in a lower risk threshold (≥1.7%), allowing 3 million more ever-smokers to be eligible for screening.

Under USPSTF guidelines, an NLST-like CT screening program with 3 annual rounds of CT screening would prevent an estimated 46,488 (95% CI, 43,924-49,053) lung cancer deaths over 5 years (57% of estimated CT-preventable deaths).

View Conference Coverage
Online CME Activities
TitleExpiration DateCME Credits
Community Practice Connections™: 18th Annual International Lung Cancer Congress®Oct 31, 20181.5
Clinical Interchange™: Translating Research to Inform Changing Paradigms: Assessment of Emerging Immuno-Oncology Strategies and Combinations across Lung, Head and Neck, and Bladder CancersOct 31, 20182.0
Publication Bottom Border
Border Publication