Dr Hurwitz on Ongoing Investigations of the Use of CAR T-Cell Therapy in Solid Tumors

Commentary
Video

Michael Hurwitz, MD, PhD, discusses the ongoing investigation into the use of CAR T-cell therapies in patients with solid tumors, such as kidney cancers.

Michael Hurwitz, MD, PhD, associate professor, internal medicine (medical oncology), Yale School of Medicine, discusses the ongoing investigation into the use of CAR T-cell therapies in patients with solid tumors, such as kidney cancers.

Hurwitz begins by stating that considerations surrounding the use of CAR T-cell therapy in solid tumors, such as renal cell carcinoma (RCC), have been uncertain. The phase 1 COBALT-RCC trial (NCT04438083), which investigated CTX130 allogeneic CRISPR/Cas9–engineered CAR T-cell therapy in patients with advanced clear cell RCC, is currently inactive. However, a new agent with similar attributes to the CAR T-cell product investigated in COBALT-RCC is under development and may improve upon the outcomes seen in COBALT-RCC, Hurwitz begins.

Another trial, the phase 1 TRAVERSE trial (NCT04696731), is ongoing at some sites, he explains. This trial involves off-the-shelf CAR T-cell therapy, Hurwitz explains. These modified CAR T cells are engineered to evade the recipient's immune response and eliminate the need for personalized CAR T-cell production, offering a faster turnaround that is crucial for individuals with advanced solid tumors, Hurwitz explains. Traditionally, introducing foreign T cells into the body triggers immune responses, which are addressed by removing human leukocyte antigens, so the body does not recognize the T cells as foreign. In these modified CAR T cells, the endogenous T-cell receptors are also removed, ensuring these cells do not perceive the body as foreign, he expands.

Along with the FDA approvals of CAR T cells for patients with hematologic malignancies, their application in solid tumors is evolving, Hurwitz emphasizes. Ongoing preclinical research aims to engineer safe, specific, and effective CAR T cells, he states. 

These innovations with CAR T-cell therapy promise highly targeted, safe cancer treatments for patients with solid tumors, Hurwitz continues. Looking forward, the possibility of synergies between CAR T-cell therapy and other treatments looms, he notes. Although the timing of integrating CAR T-cell therapies into the solid tumor treatment armamentarium is uncertain, combining these products with other agents offers a glimpse into a future where cancer treatment is more effective and personalized. In essence, technological advances in cancer therapy are just beginning to unfold, Hurwitz adds. The future promises innovations and a convergence of technologies to reshape cancer treatment, ushering in an era of hope and healing, he concludes.

Related Videos
A panel of 4 experts on bladder cancer
A panel of 4 experts on bladder cancer
Jeremy L. Ramdial, MD, assistant professor, Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center
Alexandra Gomez Arteaga, MD, Weill Cornell Medicine/New York-Presbyterian Hospital
Rahul Banerjee, MD, FACP, assistant professor, Clinical Research Division, Fred Hutchinson Cancer Center; assistant professor, Division of Hematology and Oncology, University of Washington
Alice Bertaina, MD, PhD
Jeffery Auletta, MD, The Ohio State University College of Medicine
Betty Hamilton, MD, Cleveland Clinic
Stephanie Lee, MD, MPH, Fred Hutchinson Cancer Center
A panel of 5 experts on renal cell carcinoma