Dr. Nixon on the Role of MSI in Cancer

Video

Andrew B. Nixon, PhD, ​MBA, discusses the role of microsatellite instability in cancer.

Andrew B. Nixon, PhD, ​MBA, director, Phase 1 Biomarker Laboratory, associate professor of medicine, Duke University School of Medicine, discusses the role of microsatellite instability (MSI) in cancer.

MSI describes an accumulation of mutations in the telomere region of the chromosome, says Nixon. These mutations represent insertions or deletions, also known as tandem repeats.

Tandem repeats are measurable and occur in ​the DNA when nucleotide pattern repetitions are near one another​, Nixon says.

Notably, a large number of mutations or alterations is in this region of the chromosome, the tumor is deemed microsatellite ​instable, ​says Nixon. This instability is due to a functional loss of DNA mismatch repair (MMR) enzymes.

Although these consist of many proteins, ​MLH1, MSH2, MSH6, and PMS2 are looked at most closely. ​Moreover, an alteration in these MMR proteins results in an MSI phenotype, Nixon concludes. 

Related Videos
Jane L. Meisel, MD, Emory University
Jeffrey Zonder, MD
Jun Gong, MD
John Michael Bryant, MD,
Chandler H. Park, MD, FACP
Kathryn Beckermann, MD, PhD
Eleonora Dondossola, PhD
William B. Pearse, MD
Pasi A. Jänne, MD, PhD, director, Lowe Center for Thoracic Oncology, director, Belfer Center for Applied Cancer Science, director, Chen-Huang Center for EGFR Mutant Lung Cancers, senior physician, David M. Livingston, MD, Chair, Dana-Farber Cancer Institute; professor, medicine, Harvard Medical School
Rachid Baz, MD, section head, Myeloma, Department of Malignant Hematology, Moffitt Cancer Center; co-director, Pentecost Family Myeloma Research Center