Dr. Sartor on Mechanism of Action and Safety of Radium-223 in mCRPC

Oliver Sartor, MD
Published: Tuesday, Jun 21, 2016



Oliver Sartor, MD, medical director of Tulane Cancer Center, discusses the mechanism of action of radium-223 dichloride (Xofigo) as well as its safety profile for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC).

Radium-223 has a unique mechanism of action in that it binds to hydroxyapatite and radiates the tumor microenvironment. Though the mechanism of action is not yet fully understood by researchers, Sartor says it could have pro-immune effect, anti-angiogenic effect, and/or a microenvironmental effect on tumors. 

Grade 3/4 thrombocytopenia is one treatment-related adverse event associated with radium-223. Less common and lower grade adverse events include anemia, leukopenia, diarrhea, and fatigue, he says.


Oliver Sartor, MD, medical director of Tulane Cancer Center, discusses the mechanism of action of radium-223 dichloride (Xofigo) as well as its safety profile for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC).

Radium-223 has a unique mechanism of action in that it binds to hydroxyapatite and radiates the tumor microenvironment. Though the mechanism of action is not yet fully understood by researchers, Sartor says it could have pro-immune effect, anti-angiogenic effect, and/or a microenvironmental effect on tumors. 

Grade 3/4 thrombocytopenia is one treatment-related adverse event associated with radium-223. Less common and lower grade adverse events include anemia, leukopenia, diarrhea, and fatigue, he says.



View Conference Coverage
Online CME Activities
TitleExpiration DateCME Credits
Community Practice Connections™: 18th Annual International Lung Cancer Congress®Oct 31, 20181.5
Provider and Caregiver Connection™: Addressing Patient Concerns While Managing Chemotherapy Induced Nausea and VomitingOct 31, 20182.0
Publication Bottom Border
Border Publication
x