EZH2 Emerges as Epigenetic Target

Erin M. Burns, PhD, MSPH
Published: Friday, Sep 22, 2017
Franck Morschhauser MD, PhD

Franck Morschhauser MD, PhD
The disruption of chromatin modulation has been shown to be an important step in the development of certain cancers. A variety of cancer types exhibit chromatin-modifying mutations, which often correlate with cell fate decisions. Specifically, mutations in EZH2 (enhancer of zeste homolog 2) have been frequently observed in cancer, and small molecule inhibitors have been developed against the enzymatic activity of EZH2, with evidence of clinical activity in early-phase trials.

gene encodes the protein EZH2, a histone methyltransferase and the core enzymatic subunit of polycomb repressive complex 2 (PRC2), which is involved in chromatin compaction and transcriptional silencing (Figure). EZH2 functions to methylate a lysine residue (K27) on the N-terminal region of histone H3. These activities are part of a emerging class of epigenetic modifiers attracting interest as anticancer targets.

Figure. EZH2’s Role in Promoting Tumors

EZH2s Role in Promoting Tumors
EZH2 overexpression has been associated with enhanced progression and advanced disease in cancers of the prostate, bladder, breast, and endometrium, as well as melanoma. High expression of EZH2, defined as greater than 10% in immunohistochemical analysis and up to 4-fold increased expression via real-time polymerase chain reaction testing, has been associated with increased disease aggressiveness.2 EZH2 has also been implicated in tumor initiation and progression, migration, angiogenesis, stem cell self-renewal, and activated T-regulatory cell functioning.

Agents in development are highly specific to EZH2 in order to avoid interfering with nontumorigenic pathways. Inhibition of EZH2 methyltransferase activity without degrading the PRC2 complex is achieved through competition with the methyldonor S-adenosyl methionine (SAM) for the EZH2 binding pocket; therefore, these agents are known as SAM-competitive inhibitors.


The small-molecule EZH2 inhibitor most advanced in its development is tazemetostat, which is orally administered (Table). Interim phase II tazemetostat safety data were presented at the 14th International Conference on Malignant Lymphoma in June 2017.3 Tazemetostat was well tolerated and demonstrated clinical activity in early clinical trials of patients with genetically defined solid tumors and hematologic malignancies.
... to read the full story
To Read the Full Story

View Conference Coverage
Online CME Activities
TitleExpiration DateCME Credits
Publication Bottom Border
Border Publication