News >

More Studies Needed to Improve Detection and Classification of Fallopian Tube Tumors

Gina Columbus @ginacolumbusonc
Published: Thursday, Sep 21, 2017

Giampero (John) A. Martignetti, MD, PhD
Giampero (John) A. Martignetti, MD, PhD
The road of research in gynecologic malignancies needs to take a turn toward improved detection methods and classification, experts say, in order to both understand the biology of a patient’s tumor, as well as the biology of mutations they may harbor that are not driving the cancer.

Giampero (John) A. Martignetti, MD, PhD, explains that more large-size clinical trials need to be conducted to answer some of the burgeoning questions in the fallopian tube and ovarian cancer landscape.

“We have seen new biomarkers come and go; they have all been in the literature, but they don’t make it out to the bedside,” said Martignetti. “We have got to change how we collaborate. We need to bring more patients together. We need to treat them and think about them under an umbrella, and not just have all these patients floating about. We need to bring patients together so we can do these kinds of large-scale studies.” 

In an interview during the 2017 OncLive® State of the Science SummitTM on Treatment Options in Ovarian Cancer, Martignetti, a professor of genetics and genomic sciences, oncological sciences, obstetrics, gynecology and reproductive science, and pediatrics at Mount Sinai School of Medicine, discussed evolving methods to detect gynecologic malignancies, with a focus on fallopian tube cancer.

OncLive: What did you share in your overview on fallopian tube cancer? 

Martignetti: The talk really focused on detection methods in gynecologic ovarian cancers, specifically, and trying to stress the history of how we got to where we are in detecting cancers, how to think about what it means to detect them, and some of the technology that goes on behind the scenes in detecting these cancers. It is primarily focused on circulating tumor (ct) DNA. 

How has this type of technology evolved in recent years?

The one thing that I also wanted to get across in the talk was the concept that this is a brave new world, in the sense that next-generation sequencing technologies have really changed what we can see. In the past, we have relied on x-rays, clinical exam x-rays, CT scans, but now the level of detail that we are getting is unheralded. That can be both a good thing and be pretty scary, too.

The reason it’s a good thing—and we have shown this through our own work at our institution and others have shown this not only in gynecologic cancers, but a number of different cancers—is that ctDNA can not only detect cancers earlier than current standards, but it can provide prognostic information, what the patient will probably respond to or not respond to in the future, and can provide information on targeted therapies. Even now, in some recent literature, data suggest potential for use in screening.

It’s a brave new world because those are all fantastic things. However, in one recent study that we have looked at it—and now we’re finding it in other studies that others have done in different cancers—it turns out that we have assumed the genetics of cancer. If you have particular mutations, we have always assumed that these are cancer drivers and you will get the cancer or you have that cancer. 

It turns out, there may be a lot of people walking around with these mutations. They are bonafide mutations; these are not artifacts. They are walking around with them and could be in the uterus, skin, bloodstream—and you don’t have cancer. 

That really changes how we must think about things. It’s not enough to say that we have detected mutations. We need to understand what that means in the context of cancer evolution with these new technologies. That is really the brave new world part of this. We are at the point now of having not only cancer-driven genes, variance of unknown significance, and actionable target genes, but we are really at a point where we have mutations of indeterminate potential. 

How would you like these detection methods to go a step further?

The technologies are here now where we can do these things. They are developing and being refined. What we need to do is have more clinical studies timed together with the technologies, and with the outcomes and with the clinical interpretations. This means marrying, essentially, the people who do the technology with the people who take care of the patients. It is not just one-sided; it must be a communication between those 2 areas of expertise to try moving the field forward. 

Are there any ongoing trials designed specifically for fallopian tube cancer?

Historically, cancers have been defined by where they arise. But, indeed, you do need to break these cancers down by their histology, as it turns out. Understanding the histology of a cancer is particularly important on the kinds of treatment and outcomes you would expect.


View Conference Coverage
Online CME Activities
TitleExpiration DateCME Credits
35th Annual Chemotherapy Foundation Symposium: Innovative Cancer Therapy for Tomorrow® Clinical Vignette SeriesJan 31, 20192.0
Oncology Briefings™: Current Perspectives on Preventing and Managing Tumor Lysis SyndromeJun 30, 20191.0
Publication Bottom Border
Border Publication
x