The PARP Inhibitors: Down But Not Out

Jane de Lartigue, PhD
Published: Tuesday, Jul 31, 2012
PARP1 Protein structure

Two views of the protein structure of a PARP1 inhibitor complex.

Poly(ADP-ribose) polymerase (PARP) inhibitors, particularly Sanofi’s iniparib and AstraZeneca’s olaparib, have elicited both great excitement and significant disappointment in equal measure in recent years as researchers pursue these agents in the treatment of several types of cancer with poor prognoses.

What Are PARPs? PARPs are a family of enzymes implicated in a host of key cellular processes, including chromosome stability, regulation of apoptosis, cell division, and transcriptional regulation and differentiation. A particularly important role of PARPs is in repairing DNA damage that results from everyday environmental stresses and DNA replication errors.

Major DNA Repair Pathways

PARP inhibition leads to apoptosis

PARP plays a central role in DNA repair, and researchers theorize that inhibiting PARP
would result in cancer cell death.

Inhibiting PARP to Treat Cancer: Synthetic Lethality and Beyond

The potential anticancer activity of PARP inhibitors was first elucidated in 2005. Currently, PARP inhibitors are designed to target the catalytic site of PARP1 and inhibit PARP1 by greater than 90%. They are thought to function in the treatment of cancer by exploiting the concept of synthetic lethality.

The PARP Inhibitor Scene

Iniparib
(BSI-201; Sanofi)
Iniparib was the first PARP inhibitor to reach phase III clinical development. It elicited a great deal of excitement in 2009 with the report of very promising phase II data in a particularly difficult-to-treat form of breast cancer, triple-negative breast cancer (TNBC). Disappointingly, iniparib has subsequently failed to prolong progression-free survival (PFS) or overall survival (OS) in phase III trials in patients with TNBC.

Sanofi is still pursuing iniparib development. A study in non-small cell lung cancer (NSCLC) is in phase III, and results are expected to be available soon (NCT01082549). Phase II trials also are ongoing in ovarian cancer (NCT01033292) and glioblastoma (NCT00687765).
Olaparib
(AZD2281; AstraZeneca)
Olaparib is AstraZeneca's contribution to the PARP inhibitor pool. Until recently, olaparib was being actively investigated in patients with serous ovarian cancer. Phase II trials demonstrated that olaparib improved median PFS by 8.4 months versus 4.8 months with placebo in this patient population. However, in December 2011, AstraZeneca announced that it would not be pursuing phase III trials, as interim analysis of the phase II data suggested that the PFS benefit was unlikely to translate into an OS benefit, and attempts to identify a suitable dosage for use in these studies had not been successful.

Olaparib is still undergoing phase I and II clinical testing in a variety of other indications, including recurrent ovarian or TNBC (NCT01116648), advanced NSCLC (NCT01562210), and glioblastoma (NCT01390571).
Veliparib
(ABT-888; Abbott Laboratories)
A large and very important randomized phase II study of veliparib with and without chemotherapy in BRAC 1/2-mutation associated metastatic breast cancer has been launched internationally (NCT01506609). Phase I and II trials are ongoing in pancreatic cancer (NCT01585805), rectal cancer (NCT01589419), and myeloma (NCT01495351).
Rucaparib
(CO-338; Clovis Oncology/Cancer Research UK)
Rucaparib is currently undergoing phase I/II testing as a single agent and in combination with cisplatin in patients with BRCA1/2-mutated breast and ovarian cancer (NCT01482715, NCT00664781).
BMN-673
(BioMarin Pharmaceutical)
This agent is undergoing phase I clinical testing in advanced hematological malignancies and recurrent tumors (NCT01399840, NCT01286987).
CEP-9722
(Teva Pharmaceutical Industries)
CEP-9722 is being pursued in phase I/II trials alone or in combination with temozolomide or gemcitabine/cisplatin for solid tumors or mantle cell lymphoma (NCT01311713, NCT00920595, NCT01345357).
MK4827
(Merck)
Merck's PARP inhibitor MK4827 is undergoing phase I evaluation as a single agent in advanced solid tumors or hematologic malignancies (NCT00749502), and in combination with temozolomide in advanced cancer (NCT01294735).
E7016
(Eisai, Inc)
E7016 is being evaluated in phase I/II clinical trials in combination with temozolomide in patients with advanced solid tumors and melanoma (NCT01127178, NCT01605162).

PARP Inhibitors Currently Under Study

There are a number of PARP inhibitors currently undergoing clinical testing (Above). In 2009, a significant amount of excitement was generated when the PARP inhibitor iniparib (BSI-201; Sanofi) demonstrated extremely promising results in phase II trials in patients with TNBC. Furthermore, clinical testing of olaparib (AZD2281; AstraZeneca) showed promise in patients with serous ovarian cancer, with reported improvements in progression-free survival (PFS).


... to read the full story
To Read the Full Story

View Conference Coverage
OncLive SAP
Online CME Activities
TitleExpiration DateCME Credits
Oncology Briefings™: Current Perspectives on Preventing and Managing Tumor Lysis SyndromeJun 30, 20191.0
Community Practice Connections™: 2nd Annual International Congress on Oncology Pathology™Aug 31, 20191.5
Publication Bottom Border
Border Publication
External Resources

MJH Associates
American Journal of Managed Care
Cure
MD Magazine
Oncology Nursing News
Pharmacy Times
Physicians' Education Resource
Physician's Money Digest
Specialty Pharmacy Times
TargetedOnc
OncLive Resources

Articles
Blogs
Conference Coverage
OncLive TV
Peer Exchange
Publications
Specialties
Web Exclusives


About Us
Advertise
Advisory Board
Careers
Contact Us
Forgot Password
Press Releases
Privacy Policy
Terms & Conditions
 
Intellisphere, LLC
2 Clarke Drive
Suite 100
Cranbury, NJ 08512
P: 609-716-7777
F: 609-939-0221

Copyright OncLive 2006-2018
Intellisphere, LLC. All Rights Reserved.
 
x