Interventions Are Needed to Bridge Gaps Between Real-World and Clinical Trial Populations

Publication
Article
Oncology Live®Vol. 23/No. 19
Volume 23
Issue 19
Pages: 14

In Partnership With:

Outcomes from randomized phase 3 cancer trials are the foundation for regulatory approvals of novel antineoplastic therapeutics and, when available, treatment guidelines.

Maurie Markman, MD

Maurie Markman, MD

Outcomes from randomized phase 3 cancer trials are the foundation for regulatory approvals of novel antineoplastic therapeutics and, when available, treatment guidelines. As a result, there is an assumption that output from such studies is representative, to an essential degree, of the population of individuals whose treatment may be determined by the findings.

Regulatory-quality clinical trial data are perceived by some academics as the undisputed “gold standard” with which any real-world analyses must be compared, with differences in populations assumed to represent deficiencies in the quality of the population-based analysis.1 For example, in a recently published evaluation, study authors conclude: “RWD [real-world data] study quality for novel cancer drugs is low and of insufficient rigor to inform reimbursement decisions and clinical practice.”1

Although these are strong words, a closer and, in the opinion of this commentator, less-biased look at the issue raises serious questions regarding the objective clinical relevance of regulatory-designed phase 3 randomized cancer trials.

The first concern is foundational to the conduct of this class of studies: the requirement for an as homogeneous population of research participants as possible so that any measured difference (ie, in survival, time to disease progression, specific toxicities, etc) between study groups can be ascribed to the pharmaceutical agent, device, or novel investigative strategy being evaluated. If the study groups differed, for example, in the proportion of participants with even modestly abnormal renal, pulmonary, hepatic, or cardiac function, it might be difficult to conclude that an increased number of deaths within 12 months of receiving a study drug resulted from a previously unrecognized toxicity of the experimental agent vs a greater risk of mortality in the study group because of complications from unrelated long-standing comorbid conditions.

As a result, regulatory-focused randomized studies may directly or indirectly fail to represent the real world of cancer care. Direct causes include mandating entry criteria, whereas indirect causes may include discouraging participation of elderly patients with cancer who are far more likely to experience 1 or several common comorbidities. The decision to exclude this population certainly eliminates a source of potential confusion in the interpretation of study results. However, this process may also create a situation in which such results are of highly questionable clinical relevance even if regulatory approval is achieved.

A landmark paper published several years ago highlighted the unfortunate but not infrequent relationship between regulatory approval and real-world use of an effective novel antineoplastic agent.2 Bevacizumab (Avastin), a humanized monoclonal antibody against VGFR, had been approved by the FDA as a component of treatment for several malignancies.3 Because of the potential negative effects of the agent on the vascular system, initial clinical trials excluded patients with several common comorbidities including history of bleeding, thrombotic disorders, cerebral vascular events, and congestive heart failure.2

However, once approved for commercial sale the agent was documented to be widely used, including in patient populations excluded from participation in previously conducted clinical trials. As a result, oncologists were prescribing a known beneficial anticancer agent but in settings in which the severity of toxicity was objectively unknown. How big was this problem?

In an analysis of 16,086 patients from 2004 to 2007 in the Surveillance, Epidemiology, and End Results (SEER)-Medicare database with metastatic lung, breast, or colon cancer—histologies for which bevacizumab was approved by the FDA—3039 individuals (18.9%) received bevacizumab, of whom 1082 (35.5%) had a contraindication to its use. This was principally because few trial-based data were available confirming or refuting its safety in the presence of specific comorbid conditions.

As the risk of cancer increases with age and the presence of common comorbidities follows the same pattern, the frequent exclusion of the most relevant populations calls into question the objective value of many studies used for regulatory approval and to establish optimal standards of care.

The inadequate participation of elderly and minority patients, as well as women in certain National Cancer Institute (NCI) Clinical Trial Cooperative Group efforts, has been well documented.4 Further, although age and sex are likely recorded in study reports, it is often difficult to know if individual trials have included representative samples of potentially relevant subgroups based on ethnic and socio-economic backgrounds,5-8 or the presence of clinically relevant comorbidities.8

Additional commonly employed eligibility and exclusion criteria serve to further distance clinical trial results from the real world of cancer medicine. For example, findings from a recent analysis show that 77% of 87 NCI-sponsored breast cancer clinical trials excluded patients with a history of cancer even although SEER data revealed that 6% to 7% of patients with breast cancer are known to have had a diagnosis of a prior malignancy.9

A second example is the questionable justification for exclusion based on patient performance status, with 1 report noting that 96.3% of individuals enrolled in a total of 600 phase 3 randomized trials had an ECOG performance status of 0 to 1. Further, of the limited number of trials that included patients with poor performance status, only 8.1% had an ECOG status of 2 or higher.10

From among the trials resulting in FDA approvals, only 4.7% of patients were characterized as having poor ECOG performance status. It would be an understatement to say that these data raise serious concerns regarding the relevance of individuals enrolled in trials with patients with cancer in the real-world setting.

Referring to the beginning of this commentary, it is appropriate to end with a question: What is the justification for considering the results of many phase 3 randomized studies as the gold standard?

References

  1. Boyle JM, Gegarty G, Frampton C, et al. Real-world outcomes associated with new cancer medicines approved by the Food and Drug Administration and European Medicines Agency: a retrospective cohort study. Eur J Cancer. 2021;155:136-144. doi:10.1016/j. ejca.2021.07.001.
  2. Hershman DL, Wright JD, Lim E, Buono DL, Tsai WY, Neugut AI. Contraindicated use of bevacizumab and toxicity in elderly patients with cancer. J Clin Oncol. 2013;31(28):3592-3599. doi:10.1200/ JCO.2012.48.4857
  3. Avastin. Prescribing information. Genentech, Inc; 2020. Accessed September 14, 2022. bit.ly/3dga2wC
  4. Murthy VH, Krumholz HM, Gross CP. Participation in cancer clinical trials: race-, sex-, and age-based disparities. JAMA. 2004;291(22):27202726. doi:10.1001/jama.291.22.2720.
  5. Sauer AB, Daher GS, Lohse CM, et al. Underreporting and underrepresentation of race and ethnicity in head and neck cancer trials, 2010-2020: a systematic review. JAMA Otolaryngol Head Neck Surg. 2022;148(7):662-669. doi:10.1001/jamaoto.2022.1028
  6. Owens-Walton J, Williams C, Rompré-Brodeur A, Pinto PA, Ball MW. Minority enrollment in phase II and III clinical trials in urologic oncology. J Clin Oncol. 2022;40(14):1583-1589. doi:10.1200/ JCO.21.01885
  7. Bazan JG, Obeng-Gyasi S, Gamez ME. Reporting of race and Hispanic ethnicity in breast cancer studies from the National Cancer Database. JAMA Oncol. Published online August 25, 2022. doi:10.1001/jamaoncol.2022.3527
  8. Freedman RA, Ruddy KJ. Who are the patients in our clinical trials for cancer? J Clin Oncol. 2019;37(18):1519-1523. doi:10.1200/ JCO.19.00382
  9. Perez M, Murphy CC, Pruitt SL, Rashdan S, Rahimi A, Gerber DE. Potential impact of revised NCI eligibility criteria guidance: prior malignancy exclusion in breast cancer clinical trials. J Natl Compr Canc Netw. 2022;20(7):792-799. doi:10.6004/jnccn.2022.7017
  10. Jaoude JA, Kouzy R, Mainwaring W, et al. Performance status restrictions in phase III cancer clinical trials. J Natl Compr Canc Netw. 2020;18(10):1322-1326. doi:10.6004/jnccn.2020.7578
Related Videos
A panel of 6 experts on colorectal cancer
A panel of 6 experts on colorectal cancer
Jasmin M. Zain, MD
Richard Kim, MD, an expert on colorectal cancer
A panel of 6 experts on colorectal cancer
Daneng Li, MD
In this fifth episode of OncChats: Leveraging Immunotherapy in GI Malignancies, Toufic Kachaamy, MD, of City of Hope, Sunil Sharma, MD, of City of Hope, and Madappa Kundranda, MD, PhD, of Banner MD Anderson Cancer Center, discuss next steps for research, including vaccination strategies, personalized cellular therapies, and more.
In this fourth episode of OncChats: Leveraging Immunotherapy in GI Malignancies, experts discuss research efforts being made with organoids to address existing questions with immunotherapy and the exploration of multimodality approaches to improve outcomes.
In this third episode of OncChats: Leveraging Immunotherapy in GI Malignancies, Toufic Kachaamy, MD, of City of Hope, Sunil Sharma, MD, of City of Hope, and Madappa Kundranda, MD, PhD, of Banner MD Anderson Cancer Center, discuss the potential benefits of utilizing immunotherapy approaches earlier on in the disease course.
In this second episode of OncChats: Leveraging Immunotherapy in GI Malignancies, Toufic Kachaamy, MD, of City of Hope, Sunil Sharma, MD, of City of Hope, and Madappa Kundranda, MD, PhD, of Banner MD Anderson Cancer Center, explain the challenges faced with preventing or detecting these cancers early and the understanding that is needed to develop effective early detection methods and move the needle forward.